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EFFECT OF THE COMPLIANT INTERLAYER ON THE DYNAMIC STRESS
INTENSITY FACTOR IN A PIECEWISE-HOMOGENEOUS SOLID
WITH A CIRCULAR CRACK

V. V. Mykhas’kiv and I. Ya. Zhbadynskyi UDC 539.3

The dynamic behavior of a circular crack in an elastic composite consisting of two dissimilar half-
spaces connected by a thin compliant interlayer is studied. One half-space contains a defect aligned
perpendicular to the interlayer; the defect surfaces are loaded by mormal harmonic forces, which
ensures the symmetry of the stress—strain state. The thin interlayer is modeled by conditions of a
nonideal contact of the half-spaces. The problem is reduced to a boundary integral equation with
respect to the function of dynamic opening of the defect. The numerical solution of this equation
yields frequency dependences of the mode I stress intensity factor in the wvicinity of the crack for
different values of interlayer thickness and relations between the moduli of elasticity of the composite
components.

Key words: three-dimensional piecewise-homogeneous solid, thin compliant interlayer, circular
crack, time-harmonic loading, stress intensity factors, method of boundary integral equations.

Introduction. Extensive application of composite materials in modern engineering involves the necessity of
studying the mechanisms of their failure due to the presence of microcracks. In the three-dimensional case, the most
convenient configuration for the theoretical analysis is a solid consisting of connected elastic half-spaces with a single
crack. Problems of dynamic loading of the defect in such a bimaterial were solved in [1-5] under the assumption of
an ideal mechanical contact; dynamic stress intensity factors in the vicinity of the crack were demonstrated to differ
substantially from quasi-static coefficients [6-8] because of inertial effects of crack interaction with the interface.
The present paper deals with these effects in the case of a nonideal connection of the half-spaces, modeling the
presence of a thin (as compared with the length of the exciting wave) and compliant (having a low shear modulus,
as compared with the shear modulus of matrix materials) interlayer. The numerical analysis is performed by the
method of boundary integral equations (BIE), which allows both the conditions of the interface contact and the
conditions of dynamic opening of the crack to be satisfied.

Boundary Integral Formulation of the Problem. Let us consider a three-dimensional piecewise-
homogeneous solid consisting of two elastic half-spaces A and B with densities p* and p?, shear moduli G4
and GP, and Poisson’s ratios v and v?, respectively. The half-spaces are connected by a thin elastic compliant
interlayer of thickness h with parameters p°, G°, and 1. A circular crack S of radius a is located in the half-space A
perpendicular to the mid-surface S° of the interlayer. The opposite surfaces of this crack are subjected to normal
forces with an amplitude N(x) and cyclic frequency w; the forces are harmonic with respect to time ¢ (Fig. 1).
We relate the Cartesian coordinate system Oxjxsx3 to the surface SO in such a manner that the half-space A is
described as x1 > 0, the half-space B is described as x7 < 0, and the crack is aligned in the plane z3 = 0. In a
steady-state process considered here, the time factor exp (—iwt) is eliminated from the solution, which allows the
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Fig. 1. Computational scheme.

problem to be reduced to determining the amplitudes of the sought quantities. The governing equation for the

displacement vector u” (u¥, uf, u2) in the half-space D is the Lamé equation for steady-state oscillations

wipV(V-uP) w5V x (V x uP) +uP =0. (1)

Hereinafter, D takes the values A and B, V is a three-dimensional nabla vector, wip = w/cP and wap = w/ck, where

cP and cP are the velocities of propagation of longitudinal and transverse waves in the material D, respectively.
Taking into account that max {waah,wsph} < 1 and G° < min{G4,GB}, we describe the effect of the

interlayer on the wave field using the boundary conditions for the jumps in displacements u]D with satisfied conditions

of continuity of the corresponding stresses o/, on the mid-surface S° in the form [9]
0 A B _
Arn om0 L=V ui(®) —uy (z) Ay ~0UB 5 (x) — ug(x) _
Ull( ) 2G 1 — 92,0 h ) Uﬁl(m) =G h ) ﬁ - 2735
) . L (2)
Ujl(m) = jl(m)v J=13, z e S°.

In the coordinate system used, the boundary conditions for the forces applied to the crack surfaces are written as
U?B(m):—N(w), ofg(:c):O, ji=12  xeb. (3)

The solution of the boundary-value problem (1)—(3) can be presented as
A=Vt +Vxyp?t +ud, WP =vVeP +V x P, (4)

where the component u? takes into account the contribution of dynamic opening of the crack to the wave pattern,
and the scalar functions ¢ and vector functions P (P, 9L D) are the contributions of the reflected waves
(o2 and ¥*) and waves refracted on the surface S° (¢ and ?). In Eqgs. (4), all terms satisfy the conditions of
radiation at infinity [10].

The physical meaning of the displacements u? implies that the integral presentations of its components
(u);(z) (j = 1,3) and the corresponding stresses (¢});;(x) (i,7 = 1,3) as the same as those in the case of an
infinite homogeneous solid with a crack possessing mechanical constants of the material A [11]. With allowance
for problem symmetry (absence of discontinuities in shear displacements in the domain S), these presentations are
written as follows:

9 2 exp (iwia]x — &|)
Ay (y = 9
(o) = o [14 - (2 + / [ usle) SREAT—E s,
. 1 0 exp (iwpa |z — §|) . _ 13
2|01 01 o 83:2+ng axj(aa;l //A z— €| dSe, j=1,3. (5)
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Here |x — £] is the distance between the actual point x(x1,x2,x3) and the integration point &(&1,&2), o

A A

Kronecker delta, and Aug(xz) = [(uf')™ () — (ui') T (x)]/(4n) is the jump in displacements of the opposite crack

surfaces in the direction of the axis Oxs.

The functions 4, ¥4, B, and ¥, which enter Egs. (4), are solutions of the Helmholtz equations; therefore,

they are chosen in the form of appropriate potentials

@A(B // 01(4)
J 3$ // 1+J(4+J)

vy (@) = 0.

Satisfying the contact conditions (2) with the use of Eqgs. (4)—(6), we obtain a system of integral equations

2/JA(B)

J=12,

of the second kind with respect to the densities «;

6
> Afuln
n=1

igjmﬁ%

exp (lwkp|T —

exp lwlA(lB)|=’1c - 7l|)
|z —n|

dSy,

exp (isz(zB)|iB - 77|)
|z —n|

dSh,

exp (twkalx —n|)
|z —n|

aSy)

|z — |

+(I);:(3+n)k(// 34n (M)
SO

il dS,,)} = pj(x),

where the jump in displacements Aug is contained in the functions

pi(x) = { (261~

and the differential operators A%,

x T x x 8
ATy = AT = A5 =A% =27 —8332’
H? 0?

_WGH(2F + 833% +W%B)7

) 02 o
A25:_7TGH(6 + a 2 +U)23)

82
A®, = AT, —
42 53 m Oy O3
32
A= —A% =
45 56 ax28x3
02 02
A%, = 7= +2 +w
(v i),

i 02
AG = _W(28—x§ t25- a2 "’sz)

@x _ T —
@132 - _(1)222 -

(3822 + 3823 +uha),
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and @7, have the following form:

82

—mGH 8332 8$3 ’

15 - _A26 -

0

A% =A% = A%, = e
21 24 32 821337

AZ, = WGK( 52 +2 8822+w23)

Afs = (682 5822 + W2A>

2 2

A46—7TG< 3 5 2—|—w23)

2 2

Ass = - G(aig 2 382 +od)

5= -G (2 882 +2 8822+w23)

) o 00 o,
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PToo = — Py = 8822 + 882§ +wip, 5y = —GH 833 (3(122 + 8822 + wlB)
¢§11:88—a;+38—;§+wa7 (I’§41:_(88—:%+38—;§+WEB)7
s = GK aig (ai * aa - tedp), B =-GK a?cg (58;2 * 3822 +eds),
Oy = 5%2(88; 8822 +w1A) 3, = -G 8%2(88; 6822 +w13)
?11:%(38—;%+88—;§+W%A)7 ¢§41:—Gai%(aa—;%+;—;§+w53),
62 = _aixa (88;2 3822 O 3%2 (58_;3 * 3822 +ada)

. o ;02 02 . o ;02 02
o2 =G a—xg(a—xg o2 s reds).  Ofn=—G a_@(a% 922 ;+hp).

T AT AT AT __ AT __ AT _ AT _ AT __ AT x x
A12_A13_A22_A23_A31_A41_A44_A51_A54_A62_A63_A65_A66_
T _ HRT P _HT _HT __ HT - _ 1 A/
q>j12_q>j21_q>j3l_q>j42_q)j51_(I)jﬁl_oa .]—1;6a
T _ FT _FHFT _FT _FT _HT _FHFT _HT _ FHT _ FT
(I)lll_(I)122_(I)152_(I)211_(I)232_q)262_q)322_q>332_q>422_q>432

. HT BT BT —_PHT BT _HT _ HT _ HFT
- (1)452 - (1)462 - (1)522 - (1)532 - (1)552 - (1)562 - (1)611 - q>641 =0.

Here G = GB/GA, H = G*h, G* = GP /G, and K = H(1 —20°)/(1 —1°).

The densities «; are determined from Eqs. (7) with the use of the integral Fourier transform over the
coordinates xo, 3 and subsequent inversion with the use of the convolution theorem:.

Thus, we obtain expressions for the densities o; (j = 1,6). Knowing «;, we can use relations (6) to find
the potentials of the reflected waves (p? and 14) and refracted waves (o and %) via the function Aus of crack
opening. To find the function Ausg, we use the condition of defect loading (3) with the stresses 01?3 in the left side,
which follow from Egs. (4). Finally, we obtain the BIE defined in a bounded domain S

/ Aus(&)[R(|1z — €|, w) — R(w, € w)] dSe = ;"g:zvm zes. (8)

Here the singularity of the Helmholtz potential is contained in the kernel R, which coincides with the kernel of the
boundary integral equation in the problem of dynamic loading of a crack in an infinite homogeneous solid A [11]:

R(r,w) = (9 — Qiwiar + (w%A - 5w%A)7“2 + iwlA(waA — ng)’I"B

3) exp (iwaaT) .

2 )2r4) OXp {har) (iwiar) — (9 = Qiwgar — 4w 417 + Qw47 =
,

1
+t1 (2wiy — wia .5

The regular kernel R, which takes into account crack interaction with the interface, is determined as

R(w,&,w) = Rz — €l,) +2 / i (6102 — €l ) exp [ (a1 + ) VA ()

+ Oa(|z2 — &l w, ) exp [~ (21 + &) V5 (7)]

= Og(Jr2 — ol w, ™) { exp [F21V5 (1) — @V ()] + exp [~ V() — 6051 (7))} ) dr. ©)
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Here the point @ is a symmetric mapping of the point @ to the half-space B, i.e., & = Z(x2, —x1); Fs¢(7) is an
analog of the Stoneley function [10]:

Fai(1) = 2{7*[Gwip — w3y — 2(G = D7) = [wia +2(G = TPV ()V5 (1)
—[Guwip —2(G = VP PVA()VE (1) + 4(G = D)* PV ()W (D (Ve (7)
— Gui aw3p[ViH (VS (1) + Vi (V5 ()]}
~ HE[(27% —wip)® — 47V (VP (N][(27% — wia)? — 472V (1) V5 (7))
— 2H{47° (w3 Vi (V5 (1) (Vi (7) = V3 (7)) + Gui . Vi (VS () (VP (7) = 127 (7)]
— wiawip(Wia V¥ (1) + GuigVi' (7))}

— K{4r? Vi (V) (N)[w3p (Vi (7) = V5 (1)) + Guwia (Vi (1) = V3P (7)] = whawdp (W3a Vo™ (1) + GwiV3' (7))},

vA)2wi vAwZ, T 372
O1(r,w,7) = 2(4((1 z Vj‘;2 Jo(7r) + = 5ﬁ) " Ji(rr) + T JQ(TT‘))

x {[Gw3p — 2(G = 1)T? PV (1) — A(G — 1?2V (n)VP (1)VE (1) + Gw3 w3 Vi (7)
+ HAPVE (VP (1) — (277 — wip)PI2K V5 (1) + Gwi 4] + 27%w3 g Vi (1) [KVEP () + HV/P ()]},

6V (7)

O(r,w,7) = 7o)

({G2wBp (win — wha) — 4(G - D[Gudp — (G — D71 — wd)}VA(T)

+ G{wia(Wip —wia) —4(G = Dwiy + (G = 1)7(7* — wip) V" (7)

2

+ GlGulp —wha — 2G — DPPVE() — 4G — 12 — B )VAOVEVE (D) 5 o)

2

3

— ey BV (TGl g — w3p)lT?wip — (72 — wis) (477 — wip)]
Vi(r)

+4(r% =y )V (1) [Guia VP (7) + wip Vit ()]}
+2H{GVy (1)[(2r% — wip)® — 47V (VP (7)][Hwi o Vi (7) + G
+ VP (M(27° = wha)? — AT VA (VS ()][Hwip Vi (1) + 72 = VB (VP (7)]
+ GV (1) [dwip (77 — wily) (NVA (MV + 472 (277 — i)V (1)VP (7)
+ w3 (27 = wip) VA (MVA () — wiaws Vs (Vi (7) — 8u3, VAV (VP ()1 ()
—272(27% — wip) (277 — Wi )] + 4wd (77 — WE VA (VE ()5 (1)}
— HE {4V (7)(72 — w3 ) wip + 472VP (Vi (r) = VE )GV (7) + ViA (7))

+ V3 () [AV (7)(72V5 (1) — wia Vi (7)) + wial

X [H(27? —wip)® — 4HPVE (1)VE (7) + w3V (1)]}) S5 (o)

777 (T el () = B [1+ HVE (7)ea © ().
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w2 T 372
Os(r,w,7) = 2(72(1 _2;}4) - Ji(rr) + T JQ(TT))

x (V& (r){2(G — Dl + 26 = D7 — VE 1)V (7)
+ GudplGuly —whs — 4G = 1)) = Vi (1)(27% — wiy)
X AHK[(27* = w3p)? — 4T VE(1)VP (1)) - whp QHVE (1) + KV (7)),
V() = BV 1)V (1) + Vi (7) + GVE (7),
V= | e,

—z‘,/ —72‘ T < wjp.

Particular cases of BIE (8) are the equations of the dynamic problems of a crack in ideally connected half-
spaces [5] where the interlayer thickness tends to zero (H — 0) and of a crack in a half-space with a surface free
from forcing [12] where the shear modulus of the interlayer tends to zero (H — 00).

Regularization and Numerical Solution of BIE. Identifying singularities by using integrals of the type
of the Newton (static) potential, we can identically transform Eq. (8) to the following form:

// |AUB£|3 dSg + qu 2A// Aus(§ dS§+£/Au3(§)(4(lf2;A)R(|w—§|aw)

L ), (10)

1 qw3 4 /
_ — ds, Auz(€)R(x, &,w) dSe =
e E ) 5 a @) dSe

7— 1204 4 8(v4)?
8(1—rvA4)
In the left side of BIE (10), the third integral is regular, which can be verified by expanding the kernel R into a
series with respect to |x — &.
In accordance with the condition of continuity of displacements in the vicinity of the circular crack contour,
we present the sought function as the product

x €S, q=

Auz(x) = \/a2 — (z1 — d)? — 2% a(z), xz €S, (11)

where a(x) is the unknown function and d is the distance from the defect center to the surface S° (see Fig. 1).
Based on presentation (11) singular integrals in Eq. (10) can be written as

// v |:B—£|3 —& (&) dSg = Ioo(z) () + Lo1 (2 )83( )+Iw( )83528)

0?a(x) a(z) 1 0?a(x)
Taj% 11(1:) 8331 8$2 + 2 2O(m) 012

/ [LE=E 8 (o) - a(e) - (6 - v 2 — (6 - ) 22

1
+ 3 Ina(x)

1 82 82 1 2
—3 (& —21)? ;x(;) — (&1 —21)(&2 — 22) 8;:((;;)2 b (&2 — x9)* o2 ) dSe,

// e P o ise =16 // v e 2 a(6) (@)

515



Here

z) = Z / Va2 — (@ —d -8 (fl_fg)i(ﬁj{“)j dSe.
//W s s

As the integrands in the right sides of equalities (12) are bounded at the point @ = €, numerical integration
in the corresponding integrals was performed along the domain S, formed from the domain S by removing a small
neighborhood of this point. Integrals (13) exist in the sense of the principal value and are calculated analytically
via integration by parts [13].

Substituting relations (12) into BIE (10), we obtain its regular analog in the form

(13)

00() + aag (@)a(@) + gor(2) 22 + () 222
+§goz<m>8§‘—x%”’>+gn< ) g + (o)
G v a? — 2 x—E&|,w
= / [V -~ ©R(w - €, ) dSe
_ 1—p4
- [ Ve - @ -dp -G a@R@ew)dse =51~ N@),  wes. (14)
S

where

— )k — )i
gik(®) = jk(w)—//\/cﬂ—(&—d)?—gg (& — 21)"(&2 — 22) dSe,

|z —&J°
Se

g() //W? |w EI 228 s,

Taking into account the regularity of kernels in Eq. (14), we can construct its discrete analog. For this
purpose, the circular domain S is divided into @ — 1 rectangular elements S; (¢ = 1,Q — 1) of identical length in
the direction of the radial and angular coordinates; an additional circular element S¢ is located in the center of
the crack (S =51 US2U...USg). The unknown function a(x) is approximated on a boundary element mesh as
follows:

Q
T) =Y agly(x), wES (15)
q=1

Here the coefficient oy = a(x4) equals the value of the unknown function in the geometric center x, of the gth
element and 6, (¢ = 1,Q) are the known weight functions such that ,(zm,) = Jgm.

Substituting the interpolation relation (15) into the regular analog of BIE (14) and requiring the equation
to be satisfied at each node point x, (¢ = 1,Q), we obtain the following system of linear algebraic equations with
complex coefficients with respect to the values of a:

1—vA —
Z CqmOm = —Fq— N(zq), , Q.

<
|
O
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Fig. 2. Amplitude of the normalized SIF K| versus the normalized wavenumber ¢ at the crack
contour point, which is the closest one to the interlayer (¢ = 0) for G* = 100 and G = 2 (a) and
10 (b); curves 1, 2 and 3 refer to h = 0.005a, 0.025a, and 0.15a, respectively; ideally connected
half-spaces with a crack (4); half-space with a crack under zero forcing on the half-space surface (5).

Here the coefficients e, are determined by the relations

00,,(x 0
egm = [900(Zq) + qw3 49(x¢)|qm + gr0(24) Tglq) + go1(xq) " ors

1 020, (z4) 020, (zy) 1 020, (z4)
+3 g20(xq) “ou + g11(zq) D202, 2 goz(qu)Tg

A1 —vt) a?— (& —d)2 -6 - z, — &|,w) — R(zq, &, w)| dS
o ZM/J (€1 02 = 0n(©)[ (1~ dun) (12, — ) — Riepnb)] dSe. (10

In calculating the coefficients ey, by Egs. (16), the semi-infinite integral in the kernel R (9) is replaced by a finite
integral with a rather large finite interval with allowance for the integrand decrease as 7 — oo. Difference schemes
for replacement of derivatives were also used. Numerical integration involved a piecewise-constant approximation

of the solution:
1, IS
by(a)={  ©
0, ¢S5,

Knowing the discrete solution a(x), we can easily find the mode I stress intensity factor (SIF) in the vicinity
of the crack by the formula [14]

2GAT\/Ta

Ki(p) = 1_,A

a(e)

r1=d—acos g
To=a sin ¢

where ¢ is the angular coordinate of the point on the crack contour (see Fig. 1).

Numerical Results. As an example, we consider a crack whose center is located at a distance d = 1.15a
from the interlayer. The crack surfaces are loaded by constant-amplitude tensile forces [N (x) = Ny = const]. The
densities and Poisson’s ratios of the composite components are assumed to be identical: p4 = p? and v = 8 =
1Y = 0.3, whereas the solid inhomogeneity is ensured by different shear moduli of the materials of the half-spaces
A and B and the interlayer. The domain containing the crack is divided into 217 boundary elements (Ar = 0.1a
and A = 7/12). Further refinement of the mesh is not required, because the dimensionless error of the solution is
less than 1%.

517



Figure 2 shows the amplitude of the normalized SIF K} = |K1|/ K} (K7 = 2Ng+/a/7 is the static SIF for the
same crack in a homogeneous solid under the action of the force Ny) as a function of the normalized wavenumber
¥ = waaa at the crack contour point, which is the closest one to the interlayer. In the frequency range considered,
the global feature of the SIF behavior is its increase from the static values for the wavenumber equal to zero to the
maximum values with a further monotonic decrease (Fig. 2). In the configuration with an interlayer, the SIF value
is higher than that in the bimaterial with an ideal contact of the half-spaces. As the interlayer thickness increases,
the SIF also increases and approaches the SIF value for a crack in a half-space with the surface free from forcing.
The smaller the difference in elasticity moduli of the neighboring half-spaces, the more rapidly this upper limit is
reached. For rather high wavenumbers, the effect of the solid inhomogeneity on the SIF becomes less pronounced.
A similar result is obtained as the crack moves away from the interface; then the SIF tends to the corresponding
values for a crack in a homogeneous solid [15].

This work was supported by INTAS Foundation (Grant No. 05-1000008-7979).
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